Microbial activity and quality changes during decomposition of Quercus ilex leaf litter in three Mediterranean woods
Title | Microbial activity and quality changes during decomposition of Quercus ilex leaf litter in three Mediterranean woods |
Publication Type | Journal Article |
Year of Publication | 2008 |
Authors | Papa, S., Pellegrino a., & Fioretto a. |
Journal | Applied Soil Ecology |
Volume | 40 |
Pagination | 401-410 |
Keywords | Cellulose, Enzyme activities, Fungal biomass, Lignin, litter decomposition, Microbial respiration |
Abstract | Changes in enzyme activities during litter decomposition provide diagnostic information on the dynamics of decay and functional microbial succession. Here we report a comparative study of enzyme activities involved in the breakdown of major plant components and of other key parameters (microbial respiration, fungal biomass, N, lignin and cellulose contents) in homogeneous leaf litter of Quercus ilex L. incubated in three evergreen oak woods in Southern Italy (Campania), differing for chemical and physical soil characteristics and microclimatic conditions. The results showed that the litter mass loss rates were similar in the three wood sites. Independently of the incubation sites, cellulase, xylanase and peroxydase activities showed seasonal variations with maximum and minimum levels in wet and dry periods, respectively, and this pattern closely matched microbial respiration. Activities of a- and b-amylase, instead, were high at the beginning of incubation and quickly decreased with decomposition progress because their substrate was rapidly depleted. Laccase activity, in contrast, was low at the beginning of incubation but after 6 months it increased significantly. The increase of laccase activity was correlated to an increase in fungal biomass, probably reflecting a major shift in the litter microbial community. As concerns quality changes, N and lignin content did not significantly change during decay. The cellulosic component started being degraded after about 6 months in the litter incubated in two of the three wood sites and from the start of decomposition in the third site. Apart from minor differences in the levels of certain enzyme activities, the data showed that the functional microbial succession involved in the decomposition of Q. ilex leaf litter did not change appreciably in response to differences in soil and microclimatic conditions in the incubation sites. |