The key-role of topsoil moisture on CO$_2$ efflux from a Mediterranean Quercus ilex forest

TitleThe key-role of topsoil moisture on CO$_2$ efflux from a Mediterranean Quercus ilex forest
Publication TypeJournal Article
Year of Publication2003
AuthorsJoffre, R., OURCIVAL JEAN-MARC., Rambal S., & ROCHETEAU ALAIN.
JournalAnn. For. Sci.
Volume60
Pagination519-526
KeywordsCO2 efflux, ecosystem respiration, Mediterranean ecosystem, Quercus ilex, Soil temperature, Soil water content
Abstract

CO2 respiratory losses partly determine net carbon ecosystem exchanges. The main objective of this paper was to understand regulation imposed by soil water content and temperature on soil and ecosystem CO2 efflux in a holm oak (Quercus ilex L.) Mediterranean forest. Soil CO2 efflux was monitored monthly during 1999 and 2001. Moreover, experimental water treatments were conducted in 1999 over 9 small plots (0.3 m2) during nine months. Results showed strong decreases of soil CO2 efflux for a relative soil water content below 0.7. Ecosystem respiration measured by eddy covariance over a 4-year period showed strong sensitivity to soil water content and temperature. Severe limitations of soil and ecosystem efflux imposed by low values of soil water content occurred on about 90 days per year. The best adjustments of soil and ecosystem CO2 efflux were obtained using regression models where the exponential effect of temperature is linearly related to soil water content ( r2 = 0.68 and 0.79 for soil and ecosystem respectively). Our results highlighted strong differences in respiration sensitivity to topsoil moisture between soil and ecosystem. When the relative water content (RWC) is low (0.4), an increase of 1 °C provokes an increase of soil respiration of 5.7% and an increase of ecosystem respiration of 8.6%. For nonlimiting soil water conditions, at RWC = 1, the increases of respiration caused by a 1 °C temperature increase are of 8.5% and 16.5% for soil and ecosystem respectively. These results emphasized the probable determinant influences of changes in soil water regime for respiratory fluxes and net carbon exchanges of Mediterranean forest ecosystems.