Leaf traits variation during leaf expansion in Quercus ilex L.
Title | Leaf traits variation during leaf expansion in Quercus ilex L. |
Publication Type | Journal Article |
Year of Publication | 2009 |
Authors | GRATANI, L., & Bonito A. |
Journal | Photosynthetica |
Volume | 47 |
Issue | 3 |
Pagination | 323 - 330 |
Date Published | 2009/// |
Keywords | leaf anatomy, leaf expansion, leaf morphology, net photosynthetic rate, Quercus ilex |
Abstract | The morphological, anatomical and physiological variations of leaf traits were analysed during Quercus ilex L. leaf expansion. The leaf water content (LWC), leaf area relative growth rate (RGRl ) and leaf dry mass relative growth rate (RGRm) were the highest (76±2 %, 0.413 cm 2 cm –2 d –1 , 0.709 mg mg –1 d –1 , respectively) at the beginning of the leaf expansion process (7 days after bud break). Leaf expansion lasted 84±2 days when air temperature ranged from 13.3±0.8 to 27.6±0.9 °C. The net photosynthetic rate (PN), stomatal conductance (gs ), and chlorophyll content per fresh mass (Chl) increased during leaf expansion, having the highest values [12.62±1.64 µmol (CO2) m –2 s –1 , 0.090 mol (H2O) m –2 s –1 , and 1.03±0.08 mg g –1 ,respectively] 56 days after bud break. Chl was directly correlated with leaf dry mass (DM) and PN. The thickness of palisade parenchyma contributed to the total leaf thickness (263.1±1.5 μm) by 47 %, spongy layer thickness 38 %, adaxial epidermis and cuticle thickness 9 %, and abaxial epidermis and cuticle thickness 6 %. Variation in leaf size during leaf expansion might be attributed to a combination of cells density and length, and it is confirmed by the significant (p<0.001) correlations among these traits. Q. ilex leaves reached 90 % of their definitive structure before the most severe drought period (beginning of June – end of August). The high leaf mass area (LMA, 15.1±0.6 mg cm –2 ) at full leaf expansion was indicative of compact leaves (2028±100 cells mm –2 ). Air temperature increasing might shorten the favourable period for leaf expansion, thus changing the final amount of biomass per unit leaf area of Q. ilex. |
URL | http://www.springerlink.com/index/J6N552465N18M216.pdf |