Responses to elevated atmospheric CO2 concentration and nitrogen supply of Quercus ilex L. seedlings from a coppice stand growing at a natural CO2 spring
Title | Responses to elevated atmospheric CO2 concentration and nitrogen supply of Quercus ilex L. seedlings from a coppice stand growing at a natural CO2 spring |
Publication Type | Journal Article |
Year of Publication | 1999 |
Authors | Tognetti, R., & D. J. Johnson |
Journal | Ann. For. Sci. |
Volume | 56 |
Pagination | 549-561 |
Keywords | carbon physiology, elevated [CO2], natural CO2 springs, nitrogen, Quercus ilex |
Abstract | Quercus ilex acorns were collected from a population of trees with a lifetime exposure to elevated atmospheric CO2 concentration (CO2), and after germination seedlings were exposed at two [CO2] (370 or 520 μmol mol-1) in combination with two soil N treatments (20 and 90 μmol mol -1 total N) in open-top chambers for 6 months. Increasing [CO2 ] stimulated photosynthesis and leaf dark respiration regardless of N treatment. The increase in photosynthesis and leaf dark respiration was associated with a moderate reduction in stomatal conductance, resulting in enhanced instantaneous transpiration efficiency in leaves of seedlings in CO2 enriched air. Elevated [CO2] increased biomass production only in the high-N treatment. Fine root/foliage mass ratio decreased with high-N treatment and increased with CO2 enrichment. There was evidence of a preferential shift of biomass to below-ground tissue at a low level of nutrient addition. Specific leaf area (SLA) and leaf area ratio (LAR) decreased significantly in leaves of seedlings grown in elevated [CO2] irrespective of N treatment. Leaf N concentration decreased significantly in elevated [CO2] irrespective of N treatment. As a result of patterns of N and carbon concentrations, C/N ratio generally increased with elevated [CO2] treatment and decreased with high nutrient supply. Afternoon starch concentrations in leaves did not increase significantly with increasing [CO2], as was the case for morning starch concentrations at low-N supply. Starch concentrations in leaves, stem and roots increased with elevated [CO2] and decreased with nutrient addition. The concentration of sugars was not significantly affected by either CO 2 or N treatments. Total foliar phenolic concentrations decreased in seedlings grown in elevated [CO 2] irrespective of N treatment, while nutrient supply had less of an effect. We conclude that available soil N will be a major controlling resource for the establishment and growth of Q. ilex in rising [CO 2] conditions |