Evolution of rDNA FISH patterns in the Fagaceae

TitleEvolution of rDNA FISH patterns in the Fagaceae
Publication TypeJournal Article
Year of Publication2011
AuthorsRibeiro, T., Loureiro J., Santos C., & Morais-Cecílio L.
JournalTree Genetics & Genomes
Volume7
Pagination1113-1122
KeywordsCastanea, fagaceae karyotype, Fagus, Quercus, rDNA, triploid quercus suber
Abstract

The Fagaceae is one of the most important plant families in European forest ecosystems, and it includes several genera distributed in the Northern hemisphere. In this work we studied the genome organization and evolution within the family, by karyotyping and physically mapping rDNA in ten European and Asian species of the genera Fagus, Quercus, and Castanea. All of the species studied had a chromosome number of 2n=2x=24, except for the first report of a single individual of Quercus suber which proved to be triploid (2n=3x=36). The rDNA physical mapping revealed several patterns: the dominant one is present in European and Asian Quercus subgenus Quercus, and in Castanea sativa and Castanea crenata, consisting of two 18S–25S rDNA loci (one subterminal major and one pericentromeric minor) and one 5S rDNA pericentromeric locus. In Fagus sylvatica and in Quercus sessilifolia, different patterns were observed: four terminal 18S–25S rDNA loci and two 5S rDNA pericentromeric loci in the former, and five 18S–25S rDNA loci (three terminal and two intercalary) and one 5S rDNA pericentromeric locus in the latter. In Castanea mollissima a distinct rDNA distribution pattern with two intercalary 18S–25S rDNA loci and two 5S rDNA was found. These findings suggest rDNA loci restructuring during Castanea evolution, and variability of 18S–25S loci between Quercus and Cyclobalanopsis subgenera.